简介 Brief Introduction


Pretraining on Wudao Corpus, focused on handling NLG tasks, the current largest, Chinese GPT2.

模型分类 Model Taxonomy

需求 Demand 任务 Task 系列 Series 模型 Model 参数 Parameter 额外 Extra
通用 General 自然语言生成 NLG 闻仲 Wenzhong GPT2 3.5B 中文 Chinese

模型信息 Model Information


To obtain a powerful unidirectional language model, we adopt the GPT model structure and apply it to the Chinese corpus. Similar to Wenzhong-GPT2-3.5B, this model has 30 decoder layers and 3.5 billion parameters, which is larger than the original GPT2-XL. The difference is that we pre-trained this model on the Wudao (300G version) corpus. To the best of our knowledge, it is the largest Chinese GPT model currently available.

使用 Usage

模型下载地址 Download Address


加载模型 Loading Models

from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('IDEA-CCNL/Wenzhong2.0-GPT2-3.5B-chinese')
model = GPT2Model.from_pretrained('IDEA-CCNL/Wenzhong2.0-GPT2-3.5B-chinese')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

使用示例 Usage Examples

from transformers import pipeline, set_seed
generator = pipeline('text-generation', model='IDEA-CCNL/Wenzhong2.0-GPT2-3.5B-chinese')
generator("北京位于", max_length=30, num_return_sequences=1)

引用 Citation


If you are using the resource for your work, please cite the our paper:

  author    = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}


You can also cite our website: